Abstract

To investigate the effect of fabric architectures and weaving parameters on thermal conductivities of three-dimensional woven composites, the 2.5D angle-interlock woven composites, 2.5D angle-interlock (with warp reinforcement) woven composites, and 3D orthogonal woven composites were prepared. The thermal conductivities of these woven composites were measured by using transient hot-wire method in this study. It was indicated that the thermal conductivities of three-dimensional woven composites showed significant differences due to the distribution of continuous fibers in three-dimensional woven composites with different structures, which could influence the sum fiber content on the cross section of heat flow. More importantly, compared with 2.5D angle-interlock woven composites and 2.5D angle-interlock (with warp reinforcement) woven composites, 3D orthogonal woven composites exhibited better performance in thermal conductivity. Overall, it was concluded that the thermal conductivities of three-dimensional woven composites were influenced by the fabric architectures and weaving parameters, such as the volume fraction, density, and types of fibers. Furthermore, the volume fraction of fibers on the cross section of heat flow was the dominant factor for thermal conductivities of different woven composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.