Abstract
Electrohydrodynamic deformation and orientation of a neutrally buoyant, leaky dielectric, Newtonian drop suspended in another immiscible, leaky dielectric, Newtonian medium is analyzed under the combined influence of uniform electric field and simple shear flow. Application of uniform electric field, perpendicular to the direction of shear flow, not only deforms the drop but also modifies the rheological behavior of a dilute emulsion. In the creeping flow limit, an analytical solution for the deformed drop shape is obtained when the drop shape remains nearly spherical and the surface charge convection is weak. The effective shear rheology is obtained for a dilute emulsion of non-interacting drops by calculating the one-particle contribution to the emulsion stress. The results show that the combined influence of uniform electric field and shear flow is not a simple linear superposition of the independent contributions from electric field and shear flow. Application of uniform electric field always leads to larger drop deformation with drop inclination more towards the direction of velocity gradient for the particular case of perfectly dielectric drops. Presence of surface charge convection for a leaky dielectric drop can increase or decrease the drop deformation with the drop inclination more towards either the direction of shear flow or velocity gradient. The effective shear viscosity and normal stress differences are found to be independent of shear rate. These quantities are significantly affected by the surface charge convection and shape deformation. Shape deformation always increases the effective viscosity of a dilute emulsion composed of perfectly dielectric drops. Interestingly, for a dilute emulsion composed of leaky dielectric drops, results show that the combined influence of charge convection and shape deformation can augment or decrease the effective shear viscosity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have