Abstract
The different structural parameter combinations of the transducer and the interaction mechanism of friction heating and plasticizing polymer granulates under the longitudinal vibration excitation were introduced to study ultrasonic plasticizing of polymer granulates, the structure parameters of the ultrasonic transducer with known resonant frequency and the particle output amplitude at the tool head front end were utilized to establish the friction plasticizing heating equations of the polymer granulates under the longitudinal vibration excitation. The dominant influence relationship between the structural parameters of the transducer and the heating rate of the polymer granulates was obtained by using Mathematica software, the results of further regression analysis show that the amplification ratio of the horn has the greatest effect on the friction plasticizing heating rate in structure parameters of the longitudinal vibration transducer, the effect of the front cover length, the ultrasonic tool head length and the horn length on the heating rate are smaller, the influence of the thickness of the piezoelectric ceramic and the length of the rear cover on the heating rate are smallest.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have