Abstract
Abstract Effect of two moisture levels (22.5 and 13.5%, w/w) and wetting‐drying cycles on manganese solubility was studied in NaCl‐amended soil. During 6 d incubation, higher moisture level released 40‐fold more water‐soluble Mn and 60‐fold more NH4OAc‐exchangeable‐Mn in non‐salinized soil. In NaCl‐treated soil, 50 to over 200% greater soluble and exchangeable Mn was recovered from samples incubated at 22.5% compared to 13.5% water levels. Wetting‐drying cycles significantly (P≤0.05) decreased water‐soluble Mn, which accounted for 50 to 60% increases in the exchange‐able Mn. Since other non‐oxidizing/reducing cations (Ca, Mg, Na, K) also demonstrated similar behavior, it is proposed that in addition to oxidation upon drying and reduction upon wetting, the increases in exchangeable Mn and simultaneous decreases in soluble Mn concentration are due to sorption processes. These results suggest that under field conditions, the insolubility of Mn due to continued wetting‐drying cycles may eventually lead to Mn ...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have