Abstract

AbstractDrilling of Ti6Al4V with worn tools can introduce superficial and easily measured features such as increase of cutting forces, entry and exit burrs and surface quality issues and defects. Such issues were presented in the part I of this paper. In part II, subsurface quality alterations, such as changes of the microstructure and microhardness variation is considered by preparing metallographic sections and measurement, mapping of the depth of grain deformation, and microhardness in these sections. Drastic changes in the microstructure and microhardness were found in sections drilled with drills with large wear lands, particularly in the dry cutting tests. These measurements emphasize the importance of detection of tool wear and ensuring coolant flow in drilling of holes in titanium components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call