Abstract

AbstractStainless steel slag waste can be used to prepare value‐added glass ceramics, which can fix potentially toxic Cr from the slag within the crystalline phase. The occurrence and distribution of Cr during the preparation of glass ceramics has a great influence on the final Cr fixation effect. In this study, the effects of the TiO2 content on the occurrence and distribution of Cr during the nucleation and crystallization steps and on the final properties of the glass ceramics were systematically studied. In the nucleation stage, with increasing TiO2 content, the Cr distributed in the spinel containing chromium nuclei first increases and then decreases. In the crystallization stage, Diopside crystal phase nucleates and grows with spinel containing chromium nanocrystals as heterogeneous nuclei. X‐ray photoelectron spectroscopy analysis showed that the chromium distributed in the diopside crystals first increased and then slightly decreased as the TiO2 content increased. The optimal TiO2 content is 3.4 wt.%, which resulted in 97 wt.% of the total Cr being fixed in the diopside crystalline phase (with a very low Cr leaching concentration of 0.009 mg/L), and a high compressive strength of the final glass ceramic of 267.4 MPa, and a Vickers hardness of 1211.8 HV. The research results provide theoretical and technical support for strengthening Cr fixation to enable harmless and high‐value utilization of stainless steel slag for fabricating glass ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call