Abstract

The effects of compositional variation, crystallization behavior, crystalline phases and microstructure formed in the SiO23Al2O33CaO (SAC) glass system using various amounts of TiO2 as nucleating agent were investigated by Differential Thermal Analysis (DTA), X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR) techniques. The crystallization kinetics and mechanical properties of SAC glass ceramics were studied using crystallization peak temperature (Tp) of three different glasses as obtained from DTA, the activation energy (E) and Avrami exponent (n) were also determined. The crystallization peak temperature (Tp) and activation energy (E) were found to increase with the increase in TiO2 content. The major crystalline phases were anorthite and wollastonite along with gehlenite and titanite as the minor crystalline phases present in the glass ceramic system. The studies showed that the three dimensional crystalline structure and the microhardness increased with the increase of TiO2 content in the glass ceramics system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call