Abstract
Effect of three-dimensional current distribution on void formation in flip-chip solder joints during electromigration was investigated using thermoelectrical coupled modeling, in which the current and temperature redistributions were coupled and simulated at different stages of void growth. Simulation results show that a thin underbump metallization of low resistance in the periphery of the solder joint can serve as a conducting path, leading to void propagation in the periphery of the low current density region. In addition, the temperature of the solder did not rise significantly until 95% of the contact opening was eclipsed by the propagating void.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.