Abstract
To improve the interfacial adhesion of glass fiber (GF)/epoxy composites, the GF surface was treated by dispersing aliphatic diamine-functionalized multi-walled carbon nanotubes (MWCNTs). Carboxyl MWCNTs were first modified by aliphatic diamine with different alkyl chain lengths and then deposited on the surface of GF. The effect of aliphatic diamine chain lengths on the MWCNTs’ dispersion and interfacial properties of resultant composites was investigated in detail. The results showed that uniform dispersion of MWCNTs and strong fiber/matrix interfacial adhesion could be achieved, based on the grafting of 1,8-octanediamine onto MWCNTs. Compared with the control sample, the interlaminar shear, flexural, and tensile strengths of the treated composites increased by 41%, 29%, and 30%, respectively; the interlaminar fracture toughness and storage modulus in the glass region were significantly enhanced; and the glass transition temperature increased by more than 8°C. This work demonstrates that the carbon nanotubes functionalized by appropriate chain lengths of amine modifier can improve the fiber/matrix interfacial interactions and thus enhance the strength, toughness, and stiffness of fiber-reinforced composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.