Abstract

The effect of surface hydrophilicity on the water film confined within a nanogap between a smooth plate and a highly polished steel ball has been investigated. It was found that the confined water film formed the thicker lubricate film than the prediction of elastic-isoviscous lubrication theory. Experimental results indicated that the hydrophobic surface induced the thicker water film than the hydrophilic one. It is thought that the “structured” interfacial water layer is formed between the solid surfaces and the hydrophobic group induces the more ordered hydrogen-bonding network of clathrate cages which forms the thicker water film than hydrophilic one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call