Abstract
Great attention is given to the first star formation and the epoch of reionization as main targets of planned large radio interferometries (e.g. Square Kilometre Array). Recently, it is claimed that the supersonic relative velocity between baryons and cold dark matter can suppress the abundance of first stars and impact the cosmological reionization process. Therefore, in order to compare observed results with theoretical predictions it is important to examine the effect of the supersonic relative motion on the small-scale structure formation. In this paper, we investigate this effect on the nonlinear structure formation in the context of the spherical collapse model in order to understand the fundamental physics in a simple configuration. We show the evolution of the dark matter sphere with the relative velocity by both using N-body simulations and numerically calculating the equation of motion for the dark matter mass shell. The effects of the relative motion in the spherical collapse model appear as the delay of the collapse time of dark matter halos and the decrease of the baryon mass fraction within the dark matter sphere. Based on these results, we provide the fitting formula of the critical density contrast for collapses with the relative motion effect and calculate the mass function of dark matter halos in the Press-Schechter formalism. As a result, the relative velocity decreases the abundance of dark matter halos whose mass is smaller than $10^8~M_\odot/h$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.