Abstract
It has recently been shown that supersonic relative velocities between dark matter and baryonic matter can have a significant effect on formation of the first structures in the universe. If this effect is still non-negligible during the epoch of hydrogen reionization, it generates large-scale anisotropy in the free electron density, which gives rise to a CMB B-mode. We compute the B-mode power spectrum and find a characteristic shape with acoustic peaks at l ~ 200, 400, ... The amplitude of this signal is a free parameter which is related to the dependence of the ionization fraction on the relative baryon-CDM velocity during the epoch of reionization. However, we find that the B-mode signal is undetectably small for currently favored reionization models in which hydrogen is reionized promptly at z ~ 10, although constraints on this signal by future experiments may help constrain models in which partial reionization occurs at higher redshift, e.g. by accretion onto primordial black holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.