Abstract

A method called strain-temperature stress was adopted in this work to improve the quality of ultra-thin oxide on both MOS(p) and MOS(n) capacitors. MOS structures were baked at 100 °C under externally applied mechanical stress. Reduced gate leakage current, reduced interface trap density ( D it), and improved time-dependent-dielectric-breakdown (TDDB) characteristics were observed after tensile-temperature stress treatment without increasing the oxide thickness. On the contrary, compressive-temperature stress resulted in a degraded performance of MOS capacitors. Consequently, the tensile-temperature stress method is suggested as a possible technique to enhance the ultra-thin oxide quality of MOS structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.