Abstract
In response to the urgent imperative of combating global warming and advancing sustainable energy solutions, an innovative approach has emerged, capitalizing on bicycles and road bike lane infrastructure. This solution integrates a Smart Lithium Battery Charging System with a Sustainable Energy Harvesting Pad (SEHP) designed for cyclists. The SEHP harnesses piezoelectric energy from mechanical vibrations and kinetic energy from lightweight vehicles. It produces clean, renewable electricity as an alternative to traditional power sources. Comprehensive assessments of the SEHP's energy generation performance at various proficiency levels have revealed impressive capabilities. An electronic emulator system is developed to support academic and research communities, simulating scenarios on bike lanes to efficiently charge 36.36 Wh lithium batteries at various cycling proficiency levels. The study involved specific circuit design, seamless integration with the custom Smart Lithium Battery Charging System, and optimization using Microcontroller hardware and software solutions. Practical prototypes verified the emulator's functionality and real-world applicability, making it an authentic replica of the SEHP's outcomes. This innovative technology enhances our understanding of SEHP and enables comparative analysis against other energy sources, contributing to a more sustainable future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.