Abstract

Polycrystalline silicon thin-film transistors (poly-Si TFTs) with an ultrathin electron cyclotron resonance plasma-oxidized gate oxide have been fabricated. These ultrathin gate oxide poly-Si TFTs demonstrate better gate controllability and short-channel effect suppression, as compared with conventional thick-gate oxide poly-Si TFTs. A subthreshold kink effect has been observed in these ultrathin gate oxide poly-Si TFTs after NH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> plasma treatment for the first time. The ultrathin oxide will limit the diffusion of plasma radicals, resulting in plasma radical pileup along the channel width, causing this subthreshold kink effect. The kink effect will be less significant in devices with a narrow channel width as the current flow associated with the corners of the device will dominate over the flat-plate region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.