Abstract
BackgroundThis paper simulates a lithium-ion battery pack (BRK) with cylindrical and plate batteries in an air duct. The batteries are arranged in rows of cylinders and plates in the BRK. A splitter damper is used at the air inlet and outlet in the duct. MethodsThis study was performed in a laminar airflow by changing the length of the splitter damper from 0.2 to 0.5 m, for both oval and triangular shapes of the splitter damper. Effects of various splitter damper settings on the BRK temperature, output air temperature, and heat transfer coefficient have been investigated. The BRK is simulated using COMSOL 6.0 software. Significant findingsAccording to the study's findings, the BRK greatest and lowest mean temperatures were measured along the 0.4 and 0.2 m of the splitter damper's triangular form, respectively. The heat transfer coefficient for the oval shape of the splitter damper was higher than the triangular shape of the splitter damper at all lengths of the splitter damper. The highest heat transfer coefficient is recorded in the oval form of a splitter damper with a length of 0.5 m.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have