Abstract
This article shows the importance of source/drain extension dopant species on the performance of embedded silicon-germanium strained silicon on insulator p-metal oxide semiconductor field effect transistor (MOSFET) devices, in which the activation was done using only high temperature ultrafast annealing technologies. BF2 and boron were investigated as source/drain extension dopant species. In contrast to unstrained silicon p-MOSFETs, boron source/drain extension implantations enhance device performance significantly compared to devices with BF2 source/drain extension implantations. Measurements show a 30% mobility enhancement and lower external resistance for the devices with boron source/drain extension implantations. The reason for this lies in the amorphization nature of BF2 implantations. Remaining defects after implant annealing affect the stress transfer from the embedded silicon-germanium and the overall hole mobility which leads to the observed performance degradation. Furthermore, TCAD simulation...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.