Abstract

Densification behaviour, phase transformation, microstructural evolution and hardness values of microwave sintered Al–7Zn–2·5Mg–1Cu (7775) aluminum alloy were investigated and compared with conventionally sintered samples. Microwave sintering was performed in 2·45 GHz multimode microwave furnace at temperatures ranging from 570–630 °C. Microwave sintering at a heating rate of as high as 22°C/min resulted in ~55% reduction of processing time as compared to conventional sintering. A lower sintered density observed in the case of microwave processed samples was attributed to the inhomogeneity in microstructure and phase distribution. The X-ray diffraction results of conventionally sintered samples showed the presence of MgZn2, Mg2Zn11 and CuMgAl2, while only MgZn2 and CuMgAl2 phases were found in the case of microwave sintered samples and in lesser amount. Higher hardness and high standard deviation values were noticed for microwave sintered samples as compared to conventional counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.