Abstract

Two compositions of pewter alloy were sintered using both microwave and conventional vacuum sintering, and the effects of sintering time, temperature and weight percentage of copper and antimony on the mechanical and structural properties were examined for both sintering methods. Microwave sintered samples had finer microstructures, higher densities, higher hardness and tensile strength compared to the conventionally sintered samples and traditionally cast pewter. By increasing the copper and antimony contents, higher hardness was achieved. Better mechanical properties were found after microwave sintering after shorter sintering times compared with conventional sintering, but longer sintering times resulted in better diffusion for both sintering methods. The microwave sintered samples in general were capable of achieving similar amounts of diffusion to those conventionally sintered for the same time. But the total sintering process is much faster in microwave heating than in conventional heating due to the rapid heating effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.