Abstract

Abstract Two naphthalene diimide (NDI)-based small molecules, one with a thiophene-vinylene-thiophene linker donor unit (N-TVT-N) and the other with a selenophene-vinylene-selenophene linker donor unit (N-SVS-N), were newly synthesized for the purpose of serving as the active materials of n-type organic field-effect transistors (OFETs). We investigated the various characteristics of the synthesized small molecules to study how the type of donor unit would affect the charge transport of the resulting thin film. The monomeric molecular structure of N-SVS-N, i.e., that with selenium (Se) substituted for sulfur, was found to be tilted about twice as much as that of N-TVT-N, and to display lower backbone planarity. Unexpectedly, the thin films of N-SVS-N each showed a smoother and more uniform surface morphology and predominantly edge-on orientation in comparison with those of N-TVT-N. As the result, the optimally annealed OFETs containing N-SVS-N and N-TVT-N exhibited electron mobilities of up to 0.016 cm2 V−1 s−1 and 6.6 × 10−3 cm2 V−1 s−1, respectively. These results could be explained by the structural features of N-SVS-N facilitating interactions between the electron-rich selenophenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.