Abstract
Transparent organic photovoltaic (TOPV) cells integrated into windows are key to reducing the carbon dioxide emissions associated with the building sector. However, TOPV cells that reach a compromise between efficiency and transparency must still be developed. In addition, to implement this technology in glass production companies, the materials and processes used in TOPV cell development must be compatible with producing these devices on an industrial scale. Here, an infrared (IR) cell combining a PC60BM-based active material, ITO/ZnO as the back transparent electrode, PEDOT:PSS and ITO or Ag as the top transparent electrode, and a DBR as an antireflective coating was developed and applied on 625 mm2 glass samples. The structure of the DBR based on titanium dioxide (TiO2) and silicon dioxide (SiO2) monolayers was adjusted to the IR cell absorption spectra to reach a power conversion efficiency (PCE) of 5 and 4.3, and an average visible transmission (AVT) of 41 % and 51 % for ITO and Ag top electrodes, respectively. The manufacturing route of these devices involved commercial polymers and coatings that can be deposited by technologies already applied in the glass industry, such as magnetron sputtering or thermal evaporation. Therefore, the IR cells developed here showed a good compromise between efficiency, transparency, and large-scale production manufacturability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.