Abstract

AbstractAll natural rubbers are likely to contain some long chain fatty acids or their esters. The individual effect of the four C18 fatty acids (stearic, oleic, linoleic, and linolenic acid) present in the guayule resin on the degradation of guayule rubber has been investigated concurrently by stress–relaxation of radiation cured rubber networks and by gel permeation chromatography studies on the raw rubber in the temperature zone 70–125°C. C18 unsaturated fatty acids enhance the degradation of rubber several fold. The rate of degradation follows the order: rubber ≤ rubber + stearic acid < rubber + oleic acid < rubber + linoleic acid < rubber + linolenic acid. The thermal degradation is slower than the thermooxidative. The rate of degradation monotonically increased with the number of conjugated double bonds and is first order with respect to acid concentration. The activation energy for the chain scission for both thermal and thermooxidative degradation has been found to be 95 ± 10 kJ/mol. The mechanism of degradation of guayule rubber in the presence of fatty acids is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call