Abstract

The focus in this study is on the effect of residual stress on the delamination crack initiation from the interface edge between thin films, Cu/TiN, where the stress is intensified by the free edge effect. The delamination tests, where the mechanical stress is applied on the interface, show that the specimen with the thinner Cu film has an apparently higher strength at the interface edge. The residual stress in the films is then evaluated by curvature measurement of film/substrate coupon and the influence on the delamination is analyzed. The residual stress increases with the increase of film thickness and remarkably intensifies the stress near the edge. By superimposing the contributions of the applied load and the residual stress, a good agreement is obtained in the normal stress intensity near the interface edge at the delamination independent of the Cu thickness. This signifies that the combination of intensified stresses due to the applied load and the residual stress governs the crack initiation at the interface edge, and the toughness at the interface edge is evaluated by the stress intensity factor on the basis of the fracture mechanics concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call