Abstract

The effects of adding different phospholipid (PL) matrices [milk sphingomyelin (SM) vs soy phosphatidylcholine (PC)] on emulsion stability, microstructure, and in vitro simulated lipid digestion were examined using a Model Infant Formula Emulsion (MIFE). The emulsion stability of MIFE increased significantly with PL addition (0.1 and 0.2 %). Compared to sole MIFE or MIFE + PC, the incorporation of SM resulted in increased emulsion stability (p < 0.05) and a greater amount of free fatty acid release (p < 0.05) during in vitro simulated digestion. This was mainly due to the reduction of intensive droplet aggregation, thus providing a large surface area and improved digestibility. This is further experimentally supported by the evolution of particle size distribution, zeta-potential, and microstructure analysis using confocal laser scanning microscopy. The incorporation of SM in the emulsion formation significantly delayed digestion of β-lactoglobulin during in vitro digestion. Lipid digestibility in MIFE was altered depending on the type of PL matrix, and SM displayed a superior effect to PC. Thus, the creation of a novel emulsion interface by the appropriate selection of emulsifiers can be used to improve lipid digestion in infants and obtain desirable nutritional consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call