Abstract

The interaction between dairy proteins [micellar casein (MC) vs. whey protein isolate (WPI)] and phospholipids [PL; soy phosphatidylcholine (PC) vs. milk sphingomyelin (SM)] in an oil-in-water emulsion system was investigated. Sole PC-stabilized emulsion (1%, wt/vol) showed a significantly larger mean particle diameter (6.5 μm) than SM-stabilized emulsions (3.8 μm). The mean particle diameters of emulsions prepared by the combination of protein (1%, wt/vol) and PL (1%, wt/vol) did not significantly differ from the emulsions prepared with a single emulsifier (MC, WPI, and SM). Emulsion instability differed significantly among samples by a centrifugation-mediated accelerated stability test. Emulsion instability increased in the order of MC+SM < MC+PC, WPI+SM < WPI+PC < MC < SM < WPI < PC. Protein surface load determined by aqueous phase depletion was significantly decreased only in WPI+PC emulsion, whereas no significant difference was found between the MC+SM and WPI+SM emulsions. Topographic and phase images of emulsion surface by atomic force microscopy showed surface layers prepared by protein+PL combinations were composites with different mechanical properties, and PL formed a more compact domain than proteins. A smoother phase image was observed in MC+PL combinations than in WPI+PL counterparts. Based on the microstructure analysis using confocal laser scanning microscopy, combination and MC+SM formed a uniform and thick surface coating of fat droplets. More PC aggregates were observed in the emulsions containing PC (sole PC, MC+PC, and WPI+PC) compared with their SM counterparts. Based on these results, the appropriate selection of the PL matrix is important to modulate the emulsion stability of dairy emulsion products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call