Abstract
We evaluated the effects of phenol formaldehyde (PF) resin modification on Masson pine (Pinus massoniana Lamb.) wood cell wall in wet states. The penetration degree of PF resin into wood cell was determined using confocal laser scanning microscopy (CLSM). The micromechanical properties of PF-modified wood cell walls in wet state were analyzed by quasi-static nanoindentation and dynamic modulus mapping techniques. Results showed that the PF resin significantly affected the static viscoelasticity and nanodynamic viscoelasticity of wood cell walls in oven-dried and wet states. The cell-wall mechanics increased at a PF resin concentration due to the increased bulking effects, such as decreased crystallinity of cellulose. Furthermore, the microfibrillar angle (MFA) of cell walls was lower than that of the control wood cell wall. The cell-wall mechanics of PF resin-modified sample decreased small than control sample in wet states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.