Abstract

ABSTRACTThe effect of soil pH on solubility of the potentially toxic trace elements (PTEs) [cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn)] was assessed using two native and spiked calcareous soils. Multiple PTEs solutions were added to soils and equilibrated (aged) for 40 days. Then, PTEs solubility was measured at different pH level (1–3 units below and above the pH of native soils). In native soils, all PTEs displayed a V-shaped pH-dependent solubility pattern with important releases at pH 4 and 10 (native soil 1) and 5 and 11 (native soil 2). In spiked soils, the general tendency for the pH where solubility started was in the order Cd > Ni > Zn > Cu. Solubility of added trace elements increased with a decrease in pH. Solubility of PTEs occurred at a lower pH in the soil with a higher carbonate content than the other soil (both native and spiked). In order to predict the effect of soil pH on solubility of PTEs, surface complexation and ions exchange models of PHREEQC program were used. The model simulated the PTEs solubility in soils very well. Comparison of experimental and simulated data indicated that ions exchange and surface complexation were the main mechanisms for predicting PTEs solubility in soils. Environmental implications concerning PTEs mobility might be derived from these findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call