Abstract

The electrochemical corrosion behavior of microarc oxidation (MAO) coatings produced at various oxidation times on AZ31 Mg alloys was studied in a simulated body fluid (SBF). The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to characterize the corrosion behavior. The influences of the MAO time on the microstructure and corrosion properties are discussed. The initial porosity of the MAO coating was evaluated by the potentiodynamic polarization method. Post-corrosion phase identification showed that hydroxyapatite (HA) was formed on the surface of the samples. The ratio of Ca/P in HA was determined by the X-ray Fluorescence (XRF) technique. A physical model of the corrosion process with equivalent circuits at different corrosion stages is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.