Abstract

The effect of O2 partial pressure on the mechanical properties of Al2O3 films is studied. Using films prepared by inductively coupled plasma-assisted radio frequency magnetron sputtering, the deposition rate of Al2O3 decreases rapidly when oxygen is added to the argon sputtering gas. The internal stresses in the films are compressive, with magnitude decreasing steeply from 1.6 GPa for films sputtered in pure argon gas to 0.5 GPa for films sputtered in argon gas at an O2 partial pressure of 0.89 × 10−2 Pa. Stress increases gradually with increasing O2 partial pressure. Using a nanoindentation tester with a Berkovich indenter, film hardness was measured to be about 14 GPa for films sputtered in pure argon gas. Hardness decreases rapidly on the addition of O2 gas, but increases when the O2 partial pressure is increased. Adhesion, measured using a Vickers microhardness tester, increases with increasing O2 partial pressure. Electron probe microanalyzer measurements reveal that the argon content of films decreases with increasing O2 partial pressure, whereas the O to Al composition ratio increases from 1.15 for films sputtered in pure argon gas to 1.5 for films sputtered in argon gas at O2 partial pressures over 2.4 × 10−2 Pa. X-ray diffraction measurements reveal that films sputtered in pure argon gas have an amorphous crystal structure, whereas γ-Al2O3 is produced for films sputtered in argon gas with added O2 gas. Atomic force microscopy observations reveal that the surface topography of sputtered Al2O3 films changes from spherical to needlelike as O2 partial pressure is increased. Fracture cross sections of the films observed by scanning electron microscopy reveal that the film morphology exhibits no discernible features at all O2 partial pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.