Abstract

The focus of the study is to establish the role of nitrogen addition to type 304L stainless steel, in sensitised condition, on the crack growth rate (CGR) by intergranular stress corrosion cracking (IGSCC) in the simulated boiling water reactor (BWR) environment. The CGR studies were carried out for two heats of type 304L stainless steel with 0.10 and 0.16 wt.% nitrogen and at different dissolved oxygen (DO) levels in high temperature demineralised water whose chemistry was maintained in a recirculating loop. The degree of sensitisation (DOS) was characterised quantitatively by double loop electrochemical potentiodynamic reactivation (DL-EPR) technique. The results clearly show that the susceptibility to IGSCC was substantially lower in the stainless steel with a higher level of nitrogen as reflected by the CGR values. This was attributed to the beneficial role of nitrogen addition against sensitization i.e. lesser coverage of the chromium depleted regions and higher level of chromium in the depleted regions in the stainless steels with higher nitrogen content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.