Abstract

Microwave heating has been conceived as a rapid and cost-effective method for curing carbon fiber composites. In this paper, microwave radiation was used to cure carbon fiber/bismaleimide composites aiming at shortening the production cycle time. Through controlling the microwave power, vacuum bagged laminates were fabricated under one atmosphere pressure without arcing. Degree of cure, void content and fiber volume fraction were measured to evaluate part quality. Three-point flexure and short beam shear testing were employed for mechanical assessment. Variation in the microwave cure cycle had a significant effect on the material properties. The optimum processing parameters for microwave curing were established based on analysis of the mechanical performance. A cycle time reduction of nearly 63% was obtained compared to thermal processing. The physical and mechanical properties of microwave cured samples were found to be superior to those cured in a conventional oven. The composite panels manufactured by the optimized microwave cure process exhibited a slight decrease in flexural strength but equivalent interlaminar shear strength in comparison with those produced by autoclave curing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.