Abstract

Under a given microwave curing process, different curing pressures were applied to the carbon fiber–reinforced epoxy resin pre-impregnated laminates. Nondestructive testing and microscopic analysis were used to assess the effect of curing pressure on the interlaminar shear strength (ILSS) of the carbon fiber–reinforced plastic (CFRP) laminates. Results showed that in the low curing pressure stage (below 0.4 MPa), the porosity and ILSS of the components were reduced substantially as the curing pressure increased. In the high curing pressure stage (above 0.4 MPa), the ILSS only increased by 2.2% or so and the porosity and ILSS were no longer sensitive to the pressure, which indicated there was a threshold value (0.4 MPa) of mechanical property for forming the CFRP by the microwave curing. Above the threshold value, the curing pressure should be sufficient to allow the volatile gases to dissolve in the resin, thereby eliminating the generation of voids fundamentally, and the effect of curing pressure on the quality of composites was becoming small. These results could give process engineers some basic references for eliminating the voids in the CFRP component, so that they could reach a balance between preserving the mechanical properties and reducing the curing pressure in a cost-effective way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.