Abstract
Henequen fibers were cured under ultraviolet (UV) radiation with 2-hydroxyethyl methacrylate (HEMA) in order to improve the mechanical properties and reduce the water absorption. A series of solutions of different HEMA concentration in methanol along with photoinitiator Irgacure 907 was prepared. The radiation dose, monomer (HEMA) concentration and soaking time were optimized with respect to grafting of monomer and mechanical properties of cured fiber. 3% HEMA, 5 min soaking time, at the ninth pass of radiation, produced higher tensile strength (190%) and elongation at break (195%), than those of the virgin fiber, as well as the highest grafting value (4.2%). For further improvement of the mechanical properties, the fibers were treated with an alkali (KOH) solution of various concentrations for 1 h before curing. 10% alkali-treated fibers showed increased properties, such as grafting (5.4%), tensile strength (300%), and elongation at break (290%) over raw fiber. The treated fiber showed lower water uptake than the untreated ones. The grafted fibers were also characterized by IR and it was observed that HEMA deposited on the fiber surface may react with the cellulose backbone of the Henequen fibers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have