Abstract

AbstractTo improve the physicomechanical properties of jute yarn, grafting with 1,6‐hexanediol diacrylate (HDDA) monomer was performed by a UV radiation technique. A series of HDDA solutions of various concentrations in methanol were prepared. A small quantity of photoinitiator (Darocur‐1664) was also added to HDDA solutions. To optimize the conditions for grafting, the effects of monomer concentration, soaking time, and radiation doses were studied by varying the number of soaking times along with variation of monomer concentrations and UV radiation intensities. The extent of polymer loading and the mechanical properties like tensile strength (TS), elongation at break (Eb), and tensile modulus of both treated and untreated jute were investigated. The highest tensile strength, polymer loading, and modulus were achieved with 5% HDDA concentration, 5 min soaking time, and the 4th pass of UV radiation. This set of conditions was selected as optimum and produced enhanced tensile strength (67%), modulus (108%), and polymer loading (11%) over those of virgin fiber. To further improve the mechanical properties the jute yarns were pretreated with alkali (5% NaOH) solution and after that the alkali‐treated yarn were treated under UV radiation of various intensities. The pretreated samples were grafted with optimized monomer concentration (5% HDDA). Increased properties of alkali + UV‐pretreated and grafted samples such as polymer loading (12%), tensile strength (103%), elongation at break (46%), and modulus (114%) were achieved over those of virgin jute yarn. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 18–24, 2004

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.