Abstract

Schottky diodes utilized for mechanical stress effect studies were fabricated using aluminum contacts to polycrystalline diamond thin films grown by a hot-filament-assisted chemical vapor deposition process. Compressive stress was found to have a large effect on the forward biased current-voltage characteristics of the diode, whereas the effect on the reverse biased characteristics was relatively small. This stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects that dominated the diode current-voltage characteristics in the small and large bias regions, respectively. At a large constant forward bias current, a good linear relationship between output voltage and applied force was observed for force of less than 10 N, as predicted by the piezoresistance effect. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. Compared to either silicon or germanium junction diodes and tunnel diodes, polycrystalline diamond Schottky diodes not only are very stress sensitive but also have good linearity. This study shows polycrystalline diamond Schottky diodes have potential as mechanical sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.