Abstract

Al-based metal matrix composites reinforced with 40 vol.% of nanocrystalline Al- Ca intermetallic particles were synthesized by hot pressing followed by hot extrusion process and the effect of manual blending as well as mechnical mixing on microstructure and mechanical properties was studied. Microstuture reveals that mannual blending leads to the agglomeration of Al-Ca intermetallic particles and on the other hand, the composites prepared by milling display a more homogeneous distribution of the reinforcing particles. Mechanical mixing has a strong impact on the mechanical properties. The strength increases from 112MPa for pure Al to 250 and 415MPa for the composites produced by blending and milling respectively. This behavior is linked to the reduced matrix ligament size characterizing the milled composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.