Abstract
This paper discusses the behavior of three popular adiabatic logic architectures, namely, Transmission-Gate based Adiabatic Logic, Efficient Charge Recovery Logic and static CMOS logic, in deep-submicrometer nodes. Comparison among their energy consumptions is done for varying rise times of the power supply, and for varying channel lengths, and the role of leakage current is studied. It is found that due to subthreshold leakage, adiabatic logic circuits may consume more power than conventional CMOS circuits, as channel lengths decrease.Thus it is recommended that for 90 nm technology node, channel lengths of greater than 200 nm must be used for adiabatic logic circuit implementations. It is also found that transmission-gate based logic circuits consume much less power compared to the other adiabatic logic styles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.