Abstract
It is established that the addition of hydrogen to methane in the reaction mixture upon the fabrication of diamond-like carbon films via the plasma-enhanced chemical vapor deposition method decreases residual stresses in the obtained films and significantly reduces their growth rate. The films were investigated via atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Irradiation of the prepared films with P+ and PF 4 + ions results in strong sample swelling with increasing dose, as well as in a decrease in the compressive stress up to transition to tensile one reaching saturation. Moreover, the fraction of sp 3 bonds increases with increasing ion dose while the fraction of sp 2 bonds decreases symmetrically with the processes proceeding faster upon irradiation with molecular ions. Qualitative mechanisms explaining the experimental results are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.