Abstract

As one of the most dazzling star materials in recent years, perovskite has attracted extensive attention due to its unique photoelectric properties. Since the first report on 3.8% power conversion efficiency of perovskite solar cells (PSCs) was published in 2009, its efficiency has increased to 25.2% in a short period of 10 years, almost comparable to the efficiency of commercial polysilicon cells. However, due to its simple preparation process, it is easy to introduce a large number of defects in the film formation process. The defects accelerate the recombination of carriers and thus hindering the carrier transport channel, which is unfavorable for the preparation of high efficiency perovskite solar cells. Moreover, the existence of defects will affect the stability of PSCs, accelerate the degradation of materials, thereby hindering its further commercial development. Therefore, it is very important to understand the mechanism of defects and effectively suppress the generation of defects for the fabrication of high performance devices. As an effective passivation strategy, the interface modification has been widely used. In this paper, the locations of defects in different structures of devices and their effects on device performance are discussed. Based on the carrier transport layer passivation strategy and perovskite interface modification strategy, the mechanism of the passivation defects at the transport layer/perovskite interface is analyzed. The great advantages of passivation strategy and the classification of appropriate passivation materials are pointed out. It is hoped that this paper can provide useful guidance for developing the perovskite solar cells with high repeatability, high efficiency and long-term stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.