Abstract

Abstract Functionally Graded Materials (FGM) is the result of continuous gradation of two or more constituent materials over a certain volume. This type of material overcomes many problems, particularly delamination, cracking and damages which are very frequently found in laminated composite materials. The FGMs are commonly found in space structures, and these structural elements are subjected to various kinds of loadings during its service period, in which in-plane loading is the one which significantly affects the vibration characteristics of the structural elements. In this investigation, the effect of tensile and compressive stresses on vibration characteristics of FG panels has been studied by using finite element technique (FE). For mathematical modelling Poisson's ratio is assumed constant and Young’s modulus of elasticity is assumed to vary according to the power-law distribution of volume fraction of the constituents. The plate is modelled by using 8-noded isoparametric element by considering the effect of transverse shear deformation and rotary inertia. The effect of different factors such as volume fraction index, the thickness of the panel, boundary condition and tensile as well as compressive edge loads are considered to study the vibration behaviour of the FGM plate under tensile and compressive uniaxial edge loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call