Abstract

We have conducted a study of the growth of hydrogenated amorphous silicon (a-Si:H) thin films, deposited in SiH 4H 2 r.f. discharges, through spectroscopic and real-time phase-modulated ellipsometry. The study focused on the microstructure of the a-Si:H-crystalline Si interface and the a-Si:H bulk layer. Real-time data were analysed using a theoretical growth model, previously proposed, which assumes cylindrical nucleation, coalesence and long-term growth phases. For high silane fractions (above 60%) the results are compatible with the existence of an abrupt interface, whereas for low silane fractions (20%) the real-time ellipsometric data can be modelled assuming the existence of an interface, 1.2 nm thick, composed of SiO 2 (95%) and a-Si:H (5%). The ellipsometric results indicate an optimal degree of silane fraction for which the bulk void fraction is minimized. The results are discussed in terms of growth kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.