Abstract
Undoped AlInGaN epilayers on GaN templates with different hydrogen (H2) and nitrogen (N2) carrier gas ratios (1:8, 2:8, and 3:8 as samples 1, 2 and 3, respectively) were grown. When the flow ratio of H2 and N2 rises from 1:8 to 3:8, an indium composition decrease from 3% to 1.2% is observed while the aluminum content stays constant at any flow ratio. Due to the quantum-dot-like effect, photoluminescence intensity is enhanced in the sample with the low carrier gas flow ratio of H2/N2. However, the potential well caused by indium uneven distribution is nonuniform, which is more severe in the sample with carrier gas flow ratio 1:8. The process of carrier transfer from shallow to deep potential wells would be more difficult to accomplish, resulting in the reduction of the photoluminescence intensity. This is found to be consistent with the carriers' lifetime with the help of time-resolved photoluminescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.