Abstract

This letter identifies and investigates the effect of grain orientation (GO) on negative-bias temperature instability (NBTI) characteristics of emerging metal-gate devices. A modified reaction-diffusion model is presented for estimating the effect of GO on NBTI. It is shown that neglecting the GO effect leads to substantial underestimation of the impact of the gate-oxide electric field (EOX) on the threshold voltage degradation (ΔVTH). Moreover, GO results in significant fluctuation in EOX and, hence, fluctuation in NBTI for ultrascaled CMOS devices. In addition, in FinFETs, stand-alone GO-induced gate-oxide electric field not only results in ΔVTH fluctuation but also decelerates the recovery process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call