Abstract

Triterpenoid saponins are organic compounds widely available in the plant kingdom. These molecules have received extensive attention due to their antibacterial activity against both Gram-negative and Gram-positive bacteria. Recent studies identified the antibacterial activity of saponins closely relates to their interaction with bacterial membrane lipids; however, molecular details of this interaction remain unclear. Increased understanding of the mechanisms to disrupt bacterial lipid bilayers can help to mitigate development of antibiotic resistance. Here, we examined the effect of chemical structure and deprotonation states of saponin on its interaction with a bacterial membrane model using molecular dynamics simulations. We run multiple simulations with a ternary lipid mixture of POPE/POPG/DPPG (80/15/5 mol %) and different saponin molecules. While all saponin structures can permanently bind the membrane, their location and orientation inside the bilayer depend on the sugar chains attached to their backbone. Similarly, cluster formation and stability also depend on the chemical structure of the saponin molecule. Deprotonation site affects interactions with the bilayer by modulating hydrophilicity of the molecules. At the low concentrations simulated in this work, there is no statistically significant change in the membrane properties upon saponin(s) binding, but the molecules do preferentially partition to POPE lipid environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.