Abstract

This work focuses on the interaction of the antibiotic Rifabutin (RFB) with phospholipid membrane models using small- and wide-angle X-ray scattering (SAXS and WAXS) to assess drug-membrane interactions. The effect of different concentrations of RFB on human and bacterial cell membrane models was studied using multilamellar vesicles (MLVs) at the physiological pH (7.4). In this context, MLVs of 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) were chosen to mimic the human cell membrane. To mimic the bacterial cell membrane, 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) (8:2 molar ratio) were used. The results support a perturbation of the lipid bilayers caused by RFB, especially in the bacterial membrane model, inducing phase separation that might compromise the integrity of the bacterial membrane. Therefore, the different effects of this antibiotic depending on the concentration, the charge of the phospholipid headgroup, and the membrane organization may be related with the RFB antibiotic activity and the side effects, and should be accounted for during the anti-tuberculosis (anti-TB) drug design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.