Abstract

The 1-3 piezoelectric composite is the key component of the acoustic transducer, which is widely used in detection, due to the high energy conversion efficiency, cheap raw material, and low aging. To reveal the influence of epoxy mixture, used to connect the piezoelectric column, on the composite performance, a 1-3 piezoelectric composite model was built. The effects of mixture properties on the impedance curves, vibration mode, and deformation displacement of the composite were determined. Six 1-3 piezoelectric composites with different filling mixture properties, by changing the glass microspheres' mass ratio in the epoxy, were prepared and measured to validate the model. The results showed that with the increase in the proportion of the glass microsphere in the epoxy mixture, the vibration coupling of the piezoelectric composites was gradually eliminated. The acoustic impedance was reduced by 12%. The electromechanical coupling coefficient and effective electromechanical coupling coefficient were increased by 5.4% and 8.3%, respectively. The density and Young's modulus decrease in filling mixture can significantly improve piezoelectric composite performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.