Abstract

Objectives. The aim of this study was to determine the effect of fiber position and orientation on the initial and final fracture loads of fiber-reinforced composite (FRC). Methods. Test specimens made of two indirect particulate composites (BelleGlass HP, Kerr, Orange, CA) or (Targis, Ivoclar Vivadent, Amherst, NY) were reinforced with ultra high molecular weight polyethylene (UHMWPE) fiber ribbon (Connect, Kerr, Orange, CA), woven E-glass fibers (Vectris Frame, Ivoclar Vivadent, Amherst, NY) or unidirectional R-glass fibers (Vectris Pontic, Ivoclar Vivadent, Amherst, NY). Fibers were placed with different positions, orientations or geometry into the rhombic test specimens (2×2×25 mm 3). Control specimens did not contain fiber reinforcement. The test specimens ( n=6) were stored in distilled water for 1 week at 37 °C before testing in a three-point loading test to determine the initial and final fracture load values. Results. Initial failure loads varied from 22.6 to 172.1 N. The lowest value resulted from one UHMWPE reinforcement fiber located in diagonal orientation and the highest from two unidirectional glass fiber reinforcements, one located on the tension side and the second on the compression side. Significance. Position and fiber orientation influenced the load to initial and final failure, and specimen deflection. Tension side reinforcement was most effective in increasing the load to initial and final fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.