Abstract

Many current fabrication protocols for dental fiber-reinforced composites use hand lay-up techniques and technician design input. Little information exists regarding how the manipulation of the cross-sectional design of a prosthesis might affect the modulus of elasticity and toughness. The aim of this study was to determine the effect of simple and complex cross-sectional designs on the modulus of elasticity and toughness of fiber-reinforced composite used for dental prostheses. Two particulate composites (BelleGlass HP and Targis) were reinforced with ultra-high-molecular-weight polyethylene fiber ribbon (Connect), woven E-glass fibers (Vectris Frame), or unidirectional R-glass fibers (Vectris Pontic). A range of fiber positions, orientations, or geometries were incorporated into the rhombic specimens (2 x 2 x 25 mm(3)) to achieve simple and complex experimental cross-sectional designs. The control specimen did not contain fiber reinforcement. Specimens (n=6) were stored 1 week in distilled water at 37 degrees C prior to 3-point load testing to determine the modulus of elasticity (GPa) and toughness (MPa). The data within each main fiber group were subjected to 1-way analysis of variance and a Tukey post hoc test (alpha=.05). Cross-sections of randomly selected test specimens (n=2) were made for scanning electron microscope (SEM) analysis of the fiber distribution. The mean modulus of elasticity varied from 8.7 +/- 2.0 GPa (Targis control) to 21.6 +/- 1.4 GPa (2 unidirectional glass fiber reinforcements, 1 each at the tension side and the compression side). Mean toughness varied from 0.07 +/- 0.02 MPa (unidirectional glass fiber positioned at the compression side) as the lowest mean, to 4.53 +/- 0.89 MPa (unidirectional glass fiber positioned at the tension side) as the highest. Significant differences were identified between specimen groups in each main category (all groups P<.001, except modulus of elasticity of the woven E-glass groups, where P=.003). SEM micrographs showed fiber distribution in the cross section of test specimens to correspond with the intended fiber geometry. The modulus of elasticity of the composite specimens increased when 1 or more glass fiber groups were located at the compression side of the specimen. Toughness was most effectively increased when 1 or more fiber groups were located at the tension side of the specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call