Abstract
ObjectivesDevelop a sustainable bovine hydroxyapatite dental ceramic with the addition of titanium dioxide (TiO2) nanoparticles (5 % and 8 % by weight), analyzing the outcome of this addition to the microstructure, as well as its mechanical and chemical properties, in order to evaluate whether they satisfy the International Organization for Standardization (ISO) 6872:2015 for dental ceramics or not. MethodsDisks were obtained through uniaxial followed by isostatic pressing from bovine hydroxyapatite powder and TiO2 nanoparticles and sintered at 1300ºC for 2 h. Three experimental groups were developed (HA, HA+5 %TiO2 and HA+8 %TiO2) and subjected to X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), indentation fracture (IF), biaxial flexural strength (BFS) and chemical solubility test. ResultsXRD revealed, for HA group, the appearance of a peak corresponding to b-tricalcium phosphate (ß-TCP). For HA+ 5 %TiO2 and HA+ 8 %TiO2, the entire composition was converted into ß-TCP and calcium titanate (CaTiO3). The SEM images showed a dense ceramic matrix and a uniform distribution of another phase in groups with TiO2 nanoparticles. HA+ 5 %TiO2 (1.40 ± 0.18 MPa.m1/2) and HA+ 8 %TiO2 (1.32 ± 0.18 MPa.m1/2) showed significantly higher fracture toughness values than HA (0.67 ± 0.09 MPa.m1/2). HA showed significantly higher characteristic stress (295.8 MPa) in comparison to groups with 5 % (235.1 MPa) and 8 % (214.4 MPa) TiO2 nanoparticles. Differences were not observed between the Weibull modulus values. The solubility results indicated that all experimental ceramics were above the 2000 ug/cm2 limit set by the ISO 6872:2015. SignificanceThis study proposed the development and characterization of a new ceramic for dental prosthesis made from HA extracted from bovine bones, with the intention of reusing these solids waste and transforming them into a sustainable and low-cost material. Although the experimental calcium phosphate ceramic with additions of 5 % and 8 % of TiO2 achieved desirable mechanical properties, the chemical solubility values were very high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.