Abstract
A methodology for simulating two-way multiphase coupling of mass, momentum, and energy was developed to investigate the effect of droplet mass and heat transfer on one-dimensional shock waves. The numerical approach employed a conservative formulation for the gas and a Lagrangian formulation for the particles. The approach was verified for one-way heat transfer, evaporation and condensation for low-speed flows, and for two-way shock attenuation for solid particles and small evaporating drops (for which breakup is not expected and internal temperature gradients are weak). Parametric studies were conducted to investigate the coupling physics, and, surprisingly, finite rate evaporation and two-way coupling were found to increase the rate of shock attenuation and reduce the postshock gas temperature for mass loadings as small as 0.5%. Larger drops led to long regions of nonequilibrium as did, unexpectedly, effects of evaporation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.